If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=3Y^2-60Y+257
We move all terms to the left:
-(3Y^2-60Y+257)=0
We get rid of parentheses
-3Y^2+60Y-257=0
a = -3; b = 60; c = -257;
Δ = b2-4ac
Δ = 602-4·(-3)·(-257)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-2\sqrt{129}}{2*-3}=\frac{-60-2\sqrt{129}}{-6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+2\sqrt{129}}{2*-3}=\frac{-60+2\sqrt{129}}{-6} $
| 3x+5=-8x-17 | | 16d+14+9d=14 | | 33=x-(-7) | | 2x-3.28=6.7 | | 4x+18=-38 | | 30=2.50x+15 | | 9(k02)=-6 | | -q-12q-8=12 | | 3x+4/4=5 | | -5x+4=-7x+49 | | 5x-15=59 | | 28=1-9w | | x/2=5=x-42/5 | | 25x=-43 | | 54+x+45=180 | | 61+x+32=180 | | 5x+1+7x-9=90 | | 48+x+31=180 | | -11=7-3x | | -2x+-5-8x+35=180 | | 57+x+48=180 | | 83+51+(6x-3)=180 | | 72+x+50=180 | | 2(x+8)=4x-10 | | 9x+11=7x-8 | | 83+51+(7y-10)=180 | | 25/40=3/x | | (10-2x)+(-9x-5)+54=180 | | 15x-11=-45 | | j-12=51 | | 2/3k=-22 | | 2(9s+9)-12s=2(3s+6)-15 |